SUNSTAR collectors for SWIMMING POOL HEATING

Heat Transfer Options

Pool's HEAT CONSERVATION

POOL HEATING

- Oil/Gas Heater
- Electric Heat Pump
- Solar Energy
- •Q: What is the amount of ENERGY needed to add 2 °C to a 100 ³ liter pool ?
 - A: 100 ³ liter = 100,000 Liter (Kg). Therefor <u>a total of 200,000</u> <u>KCal needed. (compare with 21 Kg Oil/Gas, or 58 Kw/Hour Heat pump)</u>

* 1Kcal is needed to heat 1 Kg of water in 1 ° C.

Solar Collectors – common requirements:

- Working Temp. : 20-35 °.C
- Resistance to pool water (with chemicals)
- Heating large quantities of water
- Reliability and Stability for many years
- Low weight
- Competitive price
- Esthetics : a choice of colored panels, to blend with the existing roof.
- Easy to repair. No need to replace an entire panel.
- Long warranty coverage

SUNSTAR has them ALL!!

And even more:

- Modular design- panels are produced in multiples of the basic unit.
- * <u>Safe operation</u> under weather extremes.
- **Corrosion proof** no scale and salt built-up in collector tubes
- <u>Variety of fittings for different applications.</u>
- Choice of Colors: Terra Cotta panels to blend beautifully with tile roofs.
- Individual tube design: eliminates wind load, allows your roof to breath and easy to repair!

Full 10 years warranty!

Collector's Efficiency: The rate of solar radiation transferred to the water.

Important factors for planning a solar system:

- Enough <u>space</u> for collectors lay-out : roof/space exposed to direct sun radiation all day long.
- Recommended <u>inclination</u>: South, South-East.
- Heat Loss: Pool's floating or other transparent cover.
- Geographical <u>location</u>: North/South, Wind velocity, shade on the roof....

	For example: (for those who need to see figures and formulas)		
٠	Open 60 ³ liter pool	$V = 60m^3$	
٠	We want to heat the pool in May to 27-28 °.	Ti= 28 C	
٠	Average daily heat loss – approx. 3 °.C	$C \Delta T = 3$	
٠	Average energy required $Q = mc\Delta T = 60,00$	0*3 = 180,000 kcal	
۲	Details of climate In May :		
	1 Daily average temp. 21.4° C	Ta= C	
۲	2. Average radiation on horizontal area	$I = 5951 \text{ kcal/m}^2$	
٠	The efficiency of the above data will therefor be	η= 72%	
٠	Collectors area will provide each day $q=\eta*I=Eff.*Rad=0.72*5951=4284$ kcal/m ²		
٠	Assuming the system has general heat loss in pipes = -20%	6 in efficiency rate	
٠	Therefore, the total area of collectors will be $A = Q/q = 180,000/q$	$(0.8*4284) = 52 \text{ m}^2$	
۲	For better indication let's assume that the pool depth is 1.1m. It's area will be 54m ²		
٠	Absorption area is almost the same as pool area.		

Operation Chart

Water flow and Solar radiation

For maximal sun absorption –horizontal and balanced flow of water is required throughout the entire system.

Working Capacity

- Working capacity of 1 SUNSTAR panel 0-7-1.1 m³/h. (0.25 m³/h, per m²)
- 52 m² absorption area requires an average capacity of 13 m³/h.
- (too) Slow flow in the collector will effect it's optimal capacity!
- (too) Fast flow in collector will create high head loss!

A system for an Olympic pool(1900 sq.m) – Mexico City IMSS

A system for a semi Olympic pool

Working Pressures

The majority factor in pressure loss for solar systems is "lifting"the water from the pool to the roof. Additional factors are: length of pipes, angles, valves and the collectors themselves.

An independent pool pump?... Points to consider:

- Existing pool filtration capacity and the filter's resistance when loaded.
- Collector's height Vs. pump house location.
- Distance and curves between collectors and pump house.
- Controlling separate systems (in public pools).

Private pools

Hotel pools

13 years old SUNSTAR panels! Still "fresh..."

System with an independent pump

BOOSTER PUMP

"SUNSTAR" is offered by "SOLE S.A.", one of the world's leader manufacturer of solar thermal systems.

For more details please visit our web site at:

www.eurostar-solar.com

contact Mrs Miriam Martinez –Export Coordinator Tel: +30-210-2389500 Fax: +30-210-2389502

E-mail: export@sole.gr